

Welcome to python-iptables’s documentation!

Contents:

	Introduction
	About python-iptables

	Installing via pip

	Compiling from source

	Using a custom iptables install

	What is supported

	Usage
	Table

	Table6

	Chain

	Policy

	Match

	Target

	Rule

	Rule6

	IPTCError

	Examples
	High level abstractions

	Rules

	Chains and tables

	More about matches and targets

	Counters

	Autocommit

	Easy rules with dictionaries

	Known Issues

Indices and tables

	Index

	Module Index

	Search Page

Introduction

About python-iptables

Iptables is the tool that is used to manage netfilter, the standard
packet filtering and manipulation framework under Linux. As the iptables
manpage puts it:

Iptables is used to set up, maintain, and inspect the tables of IPv4
packet filter rules in the Linux kernel. Several different tables may be
defined.

Each table contains a number of built-in chains and may also contain
user- defined chains.

Each chain is a list of rules which can match a set of packets. Each
rule specifies what to do with a packet that matches. This is called a
target, which may be a jump to a user-defined chain in the same table.

Python-iptables provides a pythonesque wrapper via python bindings to
iptables under Linux. Interoperability with iptables is achieved via using
the iptables C libraries (libiptc, libxtables, and the iptables
extensions), not calling the iptables binary and parsing its output. It is
meant primarily for dynamic and/or complex routers and firewalls, where rules
are often updated or changed, or Python programs wish to interface with the
Linux iptables framework..

If you are looking for ebtables python bindings, check out
python-ebtables [https://github.com/ldx/python-ebtables/].

Python-iptables supports Python 2.6, 2.7 and 3.4.

[image: Flattr]
 [https://flattr.com/submit/auto?user_id=ldx&url=https%3A%2F%2Fgithub.com%2Fldx%2Fpython-iptables][image: Latest Release]
 [https://pypi.python.org/pypi/python-iptables][image: Build Status]
 [https://travis-ci.org/ldx/python-iptables][image: Coverage Status]
 [https://coveralls.io/r/ldx/python-iptables?branch=codecoverage][image: Code Health]
 [https://landscape.io/github/ldx/python-iptables/codecoverage][image: Number of Downloads]
 [https://pypi.python.org/pypi/python-iptables][image: License]
 [https://pypi.python.org/pypi/python-iptables]

Installing via pip

The usual way:

pip install --upgrade python-iptables

Compiling from source

First make sure you have iptables installed (most Linux distributions install
it by default). Python-iptables needs the shared libraries libiptc.so
and libxtables.so coming with iptables, they are installed in /lib on
Ubuntu.

You can compile python-iptables in the usual distutils way:

% cd python-iptables
% python setup.py build

If you like, python-iptables can also be installed into a virtualenv:

% mkvirtualenv python-iptables
% python setup.py install

If you install python-iptables as a system package, make sure the
directory where distutils installs shared libraries is in the dynamic
linker’s search path (it’s in /etc/ld.so.conf or in one of the files in
the folder /etc/ld.co.conf.d). Under Ubuntu distutils by default
installs into /usr/local/lib.

Now you can run the tests:

% sudo PATH=$PATH python setup.py test
WARNING: this test will manipulate iptables rules.
Don't do this on a production machine.
Would you like to continue? y/n y
[...]

The PATH=$PATH part is necessary after sudo if you have installed into
a virtualenv, since sudo will reset your environment to a system
setting otherwise..

Once everything is in place you can fire up python to check whether the
package can be imported:

% sudo PATH=$PATH python
>>> import iptc
>>>

Of course you need to be root to be able to use iptables.

Using a custom iptables install

If you are stuck on a system with an old version of iptables, you can
install a more up to date version to a custom location, and ask
python-iptables to use libraries at that location.

To install iptables to /tmp/iptables:

% git clone git://git.netfilter.org/iptables && cd iptables
% ./autogen.sh
% ./configure --prefix=/tmp/iptables
% make
% make install

Make sure the dependencies iptables needs are installed.

Now you can point python-iptables to this install path via:

% sudo PATH=$PATH IPTABLES_LIBDIR=/tmp/iptables/lib XTABLES_LIBDIR=/tmp/iptables/lib/xtables python
>>> import iptc
>>>

What is supported

The basic iptables framework and all the match/target extensions are supported
by python-iptables, including IPv4 and IPv6 ones. All IPv4 and IPv6 tables
are supported as well.

Full documentation with API reference is available here [http://ldx.github.com/python-iptables/].

Usage

The python API in python-iptables tries to mimic the logic of iptables.
You have

	Tables, Table.FILTER, Table.NAT, Table.MANGLE and
Table.RAW for IPv4; Table6.FILTER, Table6.SECURITY,
Table6.MANGLE and Table6.RAW for IPv6. They can be used to
filter packets, do network address translation or modify packets in
various ways.

	Chains inside tables. Each table has a few built-in chains, but you
can also create your own chains and jump into them from other chains.
When you create your chains you should also specify which table it will
be used in. Chains have Policies, which tell what to do when the
end of a chain is reached.

	Each chain has zero or more rules. A rule specifies what kind of
packets to match (matches, each rule can have zero, one or more matches)
and what to do with them (target, each rule has one of them). Iptables
implements a plethora of match and target extensions. For IPv4, the
class implementing this is called Rule, for IPv6 it is called Rule6.

	Matches, specifying when a rule needs to be applied to a packet. To
create a match object you also has to specify the rule to which it
belongs.

	Targets, specifying what to do when a rule is applied to a packet.
To create a target object you also has to specify the rule to which it
belongs.

The python API is quite high-level and hides the low-level details from the
user. Using only the classes Table, Chain, Rule, Match and Target
virtually anything can be achieved that you can do with iptables from the
command line.

Table

Table6

Chain

Policy

Match

Target

Rule

Rule6

IPTCError

Examples

High level abstractions

python-iptables implements a low-level interface that tries to closely
match the underlying C libraries. The module iptc.easy improves the
usability of the library by providing a rich set of high-level functions
designed to simplify the interaction with the library, for example:

>>> import iptc
>>> iptc.easy.dump_table('nat', ipv6=False)
{'INPUT': [], 'OUTPUT': [], 'POSTROUTING': [], 'PREROUTING': []}
>>> iptc.easy.dump_chain('filter', 'OUTPUT', ipv6=False)
[{'comment': {'comment': 'DNS traffic to Google'},
 'counters': (1, 56),
 'dst': '8.8.8.8/32',
 'protocol': 'udp',
 'target': 'ACCEPT',
 'udp': {'dport': '53'}}]
>>> iptc.easy.add_chain('filter', 'TestChain')
True
>>> rule_d = {'protocol': 'tcp', 'target': 'ACCEPT', 'tcp': {'dport': '22'}}
>>> iptc.easy.insert_rule('filter', 'TestChain', rule_d)
>>> iptc.easy.dump_chain('filter', 'TestChain')
[{'protocol': 'tcp', 'target': 'ACCEPT', 'tcp': {'dport': '22'}}]
>>> iptc.easy.delete_chain('filter', 'TestChain', flush=True)

>>> # Example of goto rule // iptables -A FORWARD -p gre -g TestChainGoto
>>> iptc.easy.add_chain('filter', 'TestChainGoto')
>>> rule_goto_d = {'protocol': 'gre', 'target': {'goto': 'TestChainGoto'}}
>>> iptc.easy.insert_rule('filter', 'FORWARD', rule_goto_d)

Rules

In python-iptables, you usually first create a rule, and set any
source/destination address, in/out interface and protocol specifiers, for
example:

>>> import iptc
>>> rule = iptc.Rule()
>>> rule.in_interface = "eth0"
>>> rule.src = "192.168.1.0/255.255.255.0"
>>> rule.protocol = "tcp"

This creates a rule that will match TCP packets coming in on eth0, with a
source IP address of 192.168.1.0/255.255.255.0.

A rule may contain matches and a target. A match is like a filter matching
certain packet attributes, while a target tells what to do with the packet
(drop it, accept it, transform it somehow, etc). One can create a match or
target via a Rule:

>>> rule = iptc.Rule()
>>> m = rule.create_match("tcp")
>>> t = rule.create_target("DROP")

Match and target parameters can be changed after creating them. It is also
perfectly valid to create a match or target via instantiating them with
their constructor, but you still need a rule and you have to add the matches
and the target to their rule manually:

>>> rule = iptc.Rule()
>>> match = iptc.Match(rule, "tcp")
>>> target = iptc.Target(rule, "DROP")
>>> rule.add_match(match)
>>> rule.target = target

Any parameters a match or target might take can be set via the attributes of
the object. To set the destination port for a TCP match:

>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> match = rule.create_match("tcp")
>>> match.dport = "80"

To set up a rule that matches packets marked with 0xff:

>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> match = rule.create_match("mark")
>>> match.mark = "0xff"

Parameters are always strings. You can supply any string as the parameter
value, but note that most extensions validate their parameters. For example
this:

>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> rule.target = iptc.Target(rule, "ACCEPT")
>>> match = iptc.Match(rule, "state")
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> match.state = "RELATED,ESTABLISHED"
>>> rule.add_match(match)
>>> chain.insert_rule(rule)

will work. However, if you change the state parameter:

>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> rule.target = iptc.Target(rule, "ACCEPT")
>>> match = iptc.Match(rule, "state")
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> match.state = "RELATED,ESTABLISHED,FOOBAR"
>>> rule.add_match(match)
>>> chain.insert_rule(rule)

python-iptables will throw an exception:

Traceback (most recent call last):
 File "state.py", line 7, in <module>
 match.state = "RELATED,ESTABLISHED,FOOBAR"
 File "/home/user/Projects/python-iptables/iptc/ip4tc.py", line 369, in __setattr__
 self.parse(name.replace("_", "-"), value)
 File "/home/user/Projects/python-iptables/iptc/ip4tc.py", line 286, in parse
 self._parse(argv, inv, entry)
 File "/home/user/Projects/python-iptables/iptc/ip4tc.py", line 516, in _parse
 ct.cast(self._ptrptr, ct.POINTER(ct.c_void_p)))
 File "/home/user/Projects/python-iptables/iptc/xtables.py", line 736, in new
 ret = fn(*args)
 File "/home/user/Projects/python-iptables/iptc/xtables.py", line 1031, in parse_match
 argv[1]))
iptc.xtables.XTablesError: state: parameter error -2 (RELATED,ESTABLISHED,FOOBAR)

Certain parameters take a string that optionally consists of multiple words.
The comment match is a good example:

>>> rule = iptc.Rule()
>>> rule.src = "127.0.0.1"
>>> rule.protocol = "udp"
>>> rule.target = rule.create_target("ACCEPT")
>>> match = rule.create_match("comment")
>>> match.comment = "this is a test comment"
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> chain.insert_rule(rule)

Note that this is still just one parameter value.

However, when a match or a target takes multiple parameter values, that needs
to be passed in as a list. Let’s assume you have created and set up an
ipset called blacklist via the ipset command. To create a rule
with a match for this set:

>>> rule = iptc.Rule()
>>> m = rule.create_match("set")
>>> m.match_set = ['blacklist', 'src']

Note how this time a list was used for the parameter value, since the set
match match_set parameter expects two values. See the iptables
manpages to find out what the extensions you use expect. See ipset [http://ipset.netfilter.org/] for more
information.

When you are ready constructing your rule, add them to the chain you want it
to show up in:

>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> chain.insert_rule(rule)

This will put your rule into the INPUT chain in the filter table.

Chains and tables

You can of course also check what a rule’s source/destination address,
in/out inteface etc is. To print out all rules in the FILTER table:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> for chain in table.chains:
>>> print "======================="
>>> print "Chain ", chain.name
>>> for rule in chain.rules:
>>> print "Rule", "proto:", rule.protocol, "src:", rule.src, "dst:", \
>>> rule.dst, "in:", rule.in_interface, "out:", rule.out_interface,
>>> print "Matches:",
>>> for match in rule.matches:
>>> print match.name,
>>> print "Target:",
>>> print rule.target.name
>>> print "======================="

As you see in the code snippet above, rules are organized into chains, and
chains are in tables. You have a fixed set of tables; for IPv4:

	FILTER,

	NAT,

	MANGLE and

	RAW.

For IPv6 the tables are:

	FILTER,

	MANGLE,

	RAW and

	SECURITY.

To access a table:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> print table.name
filter

To create a new chain in the FILTER table:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = table.create_chain("testchain")

$ sudo iptables -L -n
[...]
Chain testchain (0 references)
target prot opt source destination

To access an existing chain:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, "INPUT")
>>> chain.name
'INPUT'
>>> len(chain.rules)
10
>>>

More about matches and targets

There are basic targets, such as DROP and ACCEPT. E.g. to reject
packets with source address 127.0.0.1/255.0.0.0 coming in on any of the
eth interfaces:

>>> import iptc
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> rule = iptc.Rule()
>>> rule.in_interface = "eth+"
>>> rule.src = "127.0.0.1/255.0.0.0"
>>> target = iptc.Target(rule, "DROP")
>>> rule.target = target
>>> chain.insert_rule(rule)

To instantiate a target or match, we can either create an object like above,
or use the rule.create_target(target_name) and
rule.create_match(match_name) methods. For example, in the code above
target could have been created as:

>>> target = rule.create_target("DROP")

instead of:

>>> target = iptc.Target(rule, "DROP")
>>> rule.target = target

The former also adds the match or target to the rule, saving a call.

Another example, using a target which takes parameters. Let’s mark packets
going to 192.168.1.2 UDP port 1234 with 0xffff:

>>> import iptc
>>> chain = iptc.Chain(iptc.Table(iptc.Table.MANGLE), "PREROUTING")
>>> rule = iptc.Rule()
>>> rule.dst = "192.168.1.2"
>>> rule.protocol = "udp"
>>> match = iptc.Match(rule, "udp")
>>> match.dport = "1234"
>>> rule.add_match(match)
>>> target = iptc.Target(rule, "MARK")
>>> target.set_mark = "0xffff"
>>> rule.target = target
>>> chain.insert_rule(rule)

Matches are optional (specifying a target is mandatory). E.g. to insert a rule
to NAT TCP packets going out via eth0:

>>> import iptc
>>> chain = iptc.Chain(iptc.Table(iptc.Table.NAT), "POSTROUTING")
>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> rule.out_interface = "eth0"
>>> target = iptc.Target(rule, "MASQUERADE")
>>> target.to_ports = "1234"
>>> rule.target = target
>>> chain.insert_rule(rule)

Here only the properties of the rule decide whether the rule will be applied
to a packet.

Matches are optional, but we can add multiple matches to a rule. In the
following example we will do that, using the iprange and the tcp
matches:

>>> import iptc
>>> rule = iptc.Rule()
>>> rule.protocol = "tcp"
>>> match = iptc.Match(rule, "tcp")
>>> match.dport = "22"
>>> rule.add_match(match)
>>> match = iptc.Match(rule, "iprange")
>>> match.src_range = "192.168.1.100-192.168.1.200"
>>> match.dst_range = "172.22.33.106"
>>> rule.add_match(match)
>>> rule.target = iptc.Target(rule, "DROP")
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> chain.insert_rule(rule)

This is the python-iptables equivalent of the following iptables command:

iptables -A INPUT -p tcp –destination-port 22 -m iprange –src-range 192.168.1.100-192.168.1.200 –dst-range 172.22.33.106 -j DROP

You can of course negate matches, just like when you use ! in front of a
match with iptables. For example:

>>> import iptc
>>> rule = iptc.Rule()
>>> match = iptc.Match(rule, "mac")
>>> match.mac_source = "!00:11:22:33:44:55"
>>> rule.add_match(match)
>>> rule.target = iptc.Target(rule, "ACCEPT")
>>> chain = iptc.Chain(iptc.Table(iptc.Table.FILTER), "INPUT")
>>> chain.insert_rule(rule)

This results in:

$ sudo iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 MAC ! 00:11:22:33:44:55

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Counters

You can query rule and chain counters, e.g.:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, 'OUTPUT')
>>> for rule in chain.rules:
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes

However, the counters are only refreshed when the underlying low-level
iptables connection is refreshed in Table via table.refresh(). For
example:

>>> import time, sys
>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, 'OUTPUT')
>>> for rule in chain.rules:
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes
>>> print "Please send some traffic"
>>> sys.stdout.flush()
>>> time.sleep(3)
>>> for rule in chain.rules:
>>> # Here you will get back the same counter values as above
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes

This will show you the same counter values even if there was traffic hitting
your rules. You have to refresh your table to get update your counters:

>>> import time, sys
>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, 'OUTPUT')
>>> for rule in chain.rules:
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes
>>> print "Please send some traffic"
>>> sys.stdout.flush()
>>> time.sleep(3)
>>> table.refresh() # Here: refresh table to update rule counters
>>> for rule in chain.rules:
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes

What is more, if you add:

iptables -A OUTPUT -p tcp --sport 80
iptables -A OUTPUT -p tcp --sport 22

you can query rule and chain counters together with the protocol and sport(or
dport), e.g.:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, 'OUTPUT')
>>> for rule in chain.rules:
>>> for match in rule.matches:
>>> (packets, bytes) = rule.get_counters()
>>> print packets, bytes, match.name, match.sport

Autocommit

Python-iptables by default automatically performs an iptables commit after
each operation. That is, after you add a rule in python-iptables, that
will take effect immediately.

It may happen that you want to batch together certain operations. A typical
use case is traversing a chain and removing rules matching a specific
criteria. If you do this with autocommit enabled, after the first delete
operation, your chain’s state will change and you have to restart the
traversal. You can do something like this:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> removed = True
>>> chain = iptc.Chain(table, "FORWARD")
>>> while removed == True:
>>> removed = False
>>> for rule in chain.rules:
>>> if rule.out_interface and "eth0" in rule.out_interface:
>>> chain.delete_rule(rule)
>>> removed = True
>>> break

This is clearly not ideal and the code is not very readable. An alternative is
to disable autocommits, traverse the chain, removing one or more rules, than
commit it:

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> table.autocommit = False
>>> chain = iptc.Chain(table, "FORWARD")
>>> for rule in chain.rules:
>>> if rule.out_interface and "eth0" in rule.out_interface:
>>> chain.delete_rule(rule)
>>> table.commit()
>>> table.autocommit = True

The drawback is that Table is a singleton, and if you disable autocommit, it
will be disabled for all instances of that Table.

Easy rules with dictionaries

To simplify operations with python-iptables rules we have included support to define and convert Rules object into python dictionaries.

>>> import iptc
>>> table = iptc.Table(iptc.Table.FILTER)
>>> chain = iptc.Chain(table, "INPUT")
>>> # Create an iptc.Rule object from dictionary
>>> rule_d = {'comment': {'comment': 'Match tcp.22'}, 'protocol': 'tcp', 'target': 'ACCEPT', 'tcp': {'dport': '22'}}
>>> rule = iptc.easy.encode_iptc_rule(rule_d)
>>> # Obtain a dictionary representation from the iptc.Rule
>>> iptc.easy.decode_iptc_rule(rule)
{'tcp': {'dport': '22'}, 'protocol': 'tcp', 'comment': {'comment': 'Match tcp.22'}, 'target': 'ACCEPT'}

Known Issues

These issues are mainly caused by complex interaction with upstream’s
Netfilter implementation, and will require quite significant effort to
fix. Workarounds are available.

	The hashlimit match requires explicitly setting hashlimit_htable_expire. See Issue #201 [https://github.com/ldx/python-iptables/issues/201].

	The NOTRACK target is problematic; use CT --notrack instead. See Issue #204 [https://github.com/ldx/python-iptables/issues/204].

Index

 _static/ajax-loader.gif

_images/python-iptables.png
“build passing

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/badge1.png
 downloads downloads 14k/month 14k/month

_images/badge2.png
 license license Apache License, Version 2.0 Apache License, Version 2.0

_images/badge.png
 pypi pypi v1.0.0 v1.0.0

_images/flattr-badge-large.png
7 Donate

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to python-iptables’s documentation!

 		
 Introduction

 		
 About python-iptables

 		
 Installing via pip

 		
 Compiling from source

 		
 Using a custom iptables install

 		
 What is supported

 		
 Usage

 		
 Table

 		
 Table6

 		
 Chain

 		
 Policy

 		
 Match

 		
 Target

 		
 Rule

 		
 Rule6

 		
 IPTCError

 		
 Examples

 		
 High level abstractions

 		
 Rules

 		
 Chains and tables

 		
 More about matches and targets

 		
 Counters

 		
 Autocommit

 		
 Easy rules with dictionaries

 		
 Known Issues

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

